Normal Best Fit 2D Line to a Set of Points

By Dick Kostelnicek 01-24-2021

Find m and b for the line

$$
\begin{equation*}
y=m x+b \tag{1a}
\end{equation*}
$$

in two dimensional x, y space that best fits, in the normal sense, the set of points

$$
\begin{equation*}
x_{i}, y_{i} ; i=1 \ldots N \tag{2}
\end{equation*}
$$

The perpendicular distance from a point (2) to the line (1) is

$$
\begin{equation*}
d_{i}=\frac{\mathrm{m} x_{i}-y_{i}+b}{\sqrt{m^{2}+1}} \tag{3}
\end{equation*}
$$

The distance may be positive or negative, depending on which side of the line the point resides.
One measure E of how close the set of points (2) cluster about the line (1) is given by the average of all the point's squared distances (3)

$$
\begin{equation*}
E=\frac{1}{N} \sum_{i=1}^{N} d_{i}^{2}=\frac{\sum_{i=1}^{N}\left[m x_{i}-\left(y_{i}-b\right)\right]^{2}}{N\left(m^{2}+1\right)} \tag{4a}
\end{equation*}
$$

The extremal of E for a variation of b is

$$
\begin{equation*}
\frac{d E}{d b}=0=\frac{2\left[\mathrm{~m}\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}\right)-\left(\frac{1}{N} \sum_{i=1}^{N} y_{i}\right)+b\right]}{\left(m^{2}+1\right)} \tag{5}
\end{equation*}
$$

The center of mass of the points (2) is

$$
\begin{equation*}
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}, \bar{y}=\frac{1}{N} \sum_{i=1}^{N} y_{i}, \tag{6}
\end{equation*}
$$

Inserting (6) into (5) yields

$$
\begin{equation*}
b=-m \bar{x}+\bar{y} \tag{7}
\end{equation*}
$$

The y-intercept b will be determined from (7) after m is found.
Inserting (7) into (4a) yields

$$
\begin{equation*}
E=\frac{\frac{1}{N} \sum_{i=1}^{N}\left[m\left(x_{i}-\bar{x}\right)-\left(y_{i}-\bar{y}\right)\right]^{2}}{\left(m^{2}+1\right)} \tag{4b}
\end{equation*}
$$

Transform coordinates to u, v space so that the new origin is at the center of mass (6).

$$
\begin{equation*}
u=x-\bar{x}, v=y-\bar{y} \tag{8}
\end{equation*}
$$

The line (1a) now passes through the origin of coordinates and becomes

$$
\begin{equation*}
v=m u \tag{1b}
\end{equation*}
$$

Introduce the notation

$$
\begin{equation*}
S_{u u}=\frac{1}{n} \sum_{i=1}^{N}\left(u_{i}^{2}\right), \quad S_{v v}=\frac{1}{n} \sum_{i=1}^{N}\left(v_{i}^{2}\right), \quad S_{u v}=S_{v u}=\frac{1}{n} \sum_{i=1}^{N}\left(u_{i} v_{i}\right) \tag{10}
\end{equation*}
$$

Equation (4b) becomes

$$
\begin{equation*}
E=\frac{m^{2} S_{u u}-2 m S_{u v}+S_{v v}}{m^{2}+1} \tag{4c}
\end{equation*}
$$

The extremal of $(4 \mathrm{c})$ for the variation of m is

$$
\begin{equation*}
\frac{d E}{d m}=0=\frac{2}{m^{2}+1}\left[-m E+m \frac{1}{n} S_{u u}-S_{u v}\right] \tag{9}
\end{equation*}
$$

Eqation (9) yields

$$
\begin{equation*}
E=S_{u u}-\frac{S_{u v}}{m} \tag{4d}
\end{equation*}
$$

Solving (4c) and (4d) for E and m yields two solutions

$$
\begin{align*}
& E_{1}=\left(\frac{S_{v v}+S_{u u}}{2}\right)-\sqrt{\left(\frac{S_{v v}-S_{u u}}{2}\right)^{2}+S_{u v}{ }^{2}}, \quad m_{1}=\frac{\left(\frac{S_{v v}-S_{u u}}{2}\right)-\sqrt{\left(\frac{S_{v v}-S_{u u}}{2}\right)^{2}+S_{u v}{ }^{2}}}{S_{u v}} \tag{11}\\
& E_{2}=\left(\frac{S_{v v}+S_{u u}}{2}\right)+\sqrt{\left(\frac{S_{v v}-S_{u u}}{2}\right)^{2}+{S_{u v}}^{2},} \quad m_{2}=\frac{\left(\frac{S_{v v}-S_{u u}}{2}\right)+\sqrt{\left(\frac{S_{v v u}-u u}{2}\right)^{2}+S_{u v}{ }^{2}}}{S_{u v}} \tag{12}
\end{align*}
$$

Since by (4a) $E \geq 0$, the slope m_{1} provides the least mean square error E_{1}. It represents the best fitting line (1a) to the set of points (2). Recall, b in (1a) is given in terms of m by (7).

Note that

$$
\begin{equation*}
m_{1}=-\frac{1}{m_{2}} \tag{13}
\end{equation*}
$$

This indicates that the best fitting line is perpendicular to the worst.
Since $E \geq 0$, for both lines then from (11) or (12)

$$
\begin{equation*}
S_{v v} S_{u u} \geq S_{u v}^{2} \tag{14}
\end{equation*}
$$

The solutions (11) and (12) can be cast as a matrix eiegn value problem:

$$
\left[\begin{array}{cc}
S_{v v} & -S_{s v} \tag{15}\\
-S_{u v} & S_{u u}
\end{array}\right]\left[\begin{array}{l}
1 \\
m
\end{array}\right]=E\left[\begin{array}{l}
1 \\
m
\end{array}\right]
$$

The square matrix in (15) is symmetric and (14) shows that it is positive definite. Hence, the two eigen values E_{1} and E_{2} are real and not negative. Furthermore, the eigen vectors $\left[\begin{array}{c}1 \\ m_{1}\end{array}\right]$ and $\left[\begin{array}{c}1 \\ m_{2}\end{array}\right]$ are orthogonal.

If all of the points (2) lie exactly on a single line, the square matrix in (15) is singular and the smllest eigen value $E_{1}=0$. The solution then can be determined by taking any two different points, inserting each into (1a) and solving the resulting two simultaneous equations for b and m.

